Object-based Conditional Random Fields for Road Extraction from Remote Sensing Image
نویسندگان
چکیده
To make full use of spatially contextual information and topological information in the procedure of Object-based Image Analysis (OBIA), an object-based conditional random field is proposed and used for road extraction. Objects are produced with an initial segmentation, then their neighbours are constructed. Each object is represented by three kinds of features, including the colour, the gradient of histogram and the texture. Formulating the road extraction as a binary classification problem, a Conditional Random Fields model learns and is used for inference. The experimental results demonstrate that the proposed method is effective.
منابع مشابه
Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields
Object segmentation of remotely-sensed aerial (or very-high resolution, VHS) images and satellite (or high-resolution, HR) images, has been applied to many application domains, especially in road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts at applying the deep convolutional neural network (DCNN) to extract roads from remote...
متن کاملRoad Segmentation on Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields
Object segmentation on remotely-sensed images: aerial (or very high resolution, VHS) images and satellite (or high resolution, HR) images, has been applied to many application domains, especially road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts in applying deep convolutional neural network (DCNN) to extract roads from remot...
متن کاملClassification of high resolution remote sensing image based on Geo- ontology and Conditional Random Fields
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represent...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کامل